python - how PCA fit transform on test set -


i using from sklearn.decomposition import pca library, incrementalpca reduce dimensionality of problem follows:

training_data = [...]  training_target = [...] test_data = [...] test_target = [...]  ipca = incrementalpca(n_components, batch_size) new_training_data = ipca.fit_transform(training_data) 

to run tests given classifier, need fit test set information obtained in training set (something eigenvalues , eigenvectors), reduce same size of new training set. how can this library (or other), since ipca.fit_transform(data) not return me eg eigpairs or value resize dimension of test set?

the transform internal incrementalpca object after call fit or fit_transform. when call icpa.fit_transform, telling determine principal components transform given data , apply transform data. transform data set, use transform method of trained incrementalpca object:

new_test_data = icpa.transform(test_data) 

Comments

Popular posts from this blog

asp.net - How to correctly use QUERY_STRING in ISAPI rewrite? -

jsf - "PropertyNotWritableException: Illegal Syntax for Set Operation" error when setting value in bean -

laravel - Undefined property: Illuminate\Pagination\LengthAwarePaginator::$id (View: F:\project\resources\views\admin\carousels\index.blade.php) -