geometry - Math Parrallelogram Level Generation -
i developing mobile runner. therefore need platforms allow transition 1 height (2d).
given: triangle afb has rectangle alpha, triangle cde has rectangle @ delta, line bc = ef, line ed = ab , height of parralelogram ed(=ab)
looking for: af = cd (any of both)
i can't find solution.
tip: have formula case when can give me parralel line long sides of parrallelogram able work out rest. couldn't find parrall line though.
i'll try re-interpretation "planar mechanism" possibly still not right in input description.
input: solid fixed triangle @ bottom short perpendicular sides length a
, c
. top triangle same, rotated 180°, not fixed. triangles connected bars of length b
rotationally flexible , fixed giving angle phi
.
- bottom triangle:
a=(0,0), f=(c,0), b=(0,a)
- lower bar:
f=(c,0), e=(c,0)+b*(cos(phi), sin(phi))
- upper bar:
b=(0,a), c=(0,a)+b*(cos(phi), sin(phi))
- upper triangle:
e=(c,0)+b*(cos(phi), sin(phi))
,d=(c,a)+b*(cos(phi), sin(phi))
,c=(0,a)+b*(cos(phi), sin(phi))
if not angle given, total height @ segment cd
,
h=a+b*sin(phi),
then horizontal component can calculated via trigonometric identity
b*cos(phi) = sqrt( b^2 - (h-a)^2 )
set bsin=b*sin(phi)=h-a
, bcos=sqrt(b*b-bsin*bsin)
then
c=( bcos, a+bsin) d=(c+bcos, a+bsin) e=(c+bcos, bsin)
Comments
Post a Comment