python - How to pass values to a trained Regressor Function from a Javascript front end? -
i trained sgdregressor on dataset 3756 rows. returned alpha value want use. want output prediction based on new set of values received javascript front end. includes categorical data need 1 hot encoding. want know how pass values trained regressor module , generate prediction based on it.
def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, x_train, y, scoring="neg_mean_squared_error", cv=5)) return(rmse) alphas = [0.00005, 0.00015, 0.00045, 0.0135] mv_sgd = [rmse_cv(sgdregressor(alpha = alpha)).mean() alpha in alphas]
typically use .fit() , .predict() methods, assuming you're using sklearn. create predictor object this:
from sklearn import linear_model clf = linear_model.sgdregressor() clf.fit(x, y)
then when new value, javascript, use predict.method
prediction = clf.predict(newcase)
there many ways value javascript, mentioned, django may start.
Comments
Post a Comment